Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что ни для каких чисел x, y, t не могут одновременно выполняться три неравенства:  |x| < |y − t|, |y| < |t − x|, |t| < |x − y|.

Вниз   Решение


Докажите, что сумма длин любых двух медиан произвольного треугольника
  а) не больше ¾ P, где P – периметр этого треугольника;
  б) не меньше ¾ p, где p – полупериметр этого треугольника.

ВверхВниз   Решение


В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
  а) больше 15?
  б) больше 20?

ВверхВниз   Решение


На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.

ВверхВниз   Решение


В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32836  (#1)

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8,9

В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?
Прислать комментарий     Решение


Задача 32837  (#2)

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?
Прислать комментарий     Решение


Задача 32838  (#3)

Тема:   [ Задачи на движение ]
Сложность: 2
Классы: 7,8

Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы?

Прислать комментарий     Решение

Задача 32839  (#4)

Тема:   [ Задачи на движение ]
Сложность: 4-
Классы: 7,8,9

Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Прислать комментарий     Решение

Задача 32840  (#5)

Тема:   [ Соображения непрерывности ]
Сложность: 3+
Классы: 7,8,9

Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .