ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятия:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У 2009 года есть такое свойство: меняя местами цифры числа 2009, нельзя получить меньшее четырехзначное число (с нуля числа не начинаются). В каком году это свойство впервые повторится снова? Решение Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны |
Страница: << 1 2 3 4 >> [Всего задач: 18]
Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.
Делится ли 222555 + 555222 на 7?
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
Страница: << 1 2 3 4 >> [Всего задач: 18] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|