ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 108168

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 3+
Классы: 8,9

Внутри острого угла XOY взяты точки M и N, причём  ∠XON = ∠YOM.  На луче OX отмечена точка Q так, что  ∠NQO = ∠MQX,  а на луче OY – точка P так, что  ∠NPO = ∠MPY.  Докажите, что длины ломаных MPN и MQN равны.

Прислать комментарий     Решение

Задача 35621

Темы:   [ Вычисление интегралов ]
[ Тождественные преобразования (тригонометрия) ]
[ Симметрия и инволютивные преобразования ]
Сложность: 4-
Классы: 11

Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.
Прислать комментарий     Решение


Задача 107829

Темы:   [ Шестиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 8,9,10

В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 107824

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

а) Докажите, что существует натуральное число, которое при замене любой тройки соседних цифр на произвольную тройку остаётся составным.
б) Существует ли такое 1997-значное число?

Прислать комментарий     Решение

Задача 107830

Темы:   [ Задачи на движение ]
[ Периодичность и непериодичность ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Деление с остатком ]
Сложность: 4
Классы: 7,8,9,10

По окружности в одном направлении на равных расстояниях курсируют n поездов. На этой дороге в вершинах правильного треугольника расположены станции A, B и C (обозначенные по направлению движения). Ира входит на станцию A и одновременно Лёша входит на станцию B, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .