Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

Вниз   Решение


Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


ВверхВниз   Решение


Докажите, что если  ∠BAC = 2∠ABC,  то   BC² = (AC + ABAC.

ВверхВниз   Решение


На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине.
  а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что  ∠B1MC1 = φ.
  б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

ВверхВниз   Решение


Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что  AE : CF = AO : CO.

ВверхВниз   Решение


Садовник, привив черенок редкого растения, оставляет его расти два года, а затем ежегодно берет от него по 6 черенков. С каждым новым черенком он поступает аналогично. Сколько будет растений и черенков на n-ом году роста первоначального растения?

ВверхВниз   Решение


Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

ВверхВниз   Решение


На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.

ВверхВниз   Решение


Определим последовательности {xn} и {yn} при помощи условий:

xn = xn - 1 + 2yn - 1sin2$\displaystyle \alpha$,    yn = yn - 1 + 2xn - 1cos2$\displaystyle \alpha$;    x0 = 0, y0 = cos$\displaystyle \alpha$.

Найдите выражение для xn и yn через n и $ \alpha$.

ВверхВниз   Решение


В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

ВверхВниз   Решение


Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю.

ВверхВниз   Решение


Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

ВверхВниз   Решение


Найти наибольшее значение, которое может принимать выражение  aek – afh + bfg – bdk + cdh – ceg,  если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 30303

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 6,7

На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Прислать комментарий     Решение

Задача 35832

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7

Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.

Прислать комментарий     Решение

Задача 35834

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Найти наибольшее значение, которое может принимать выражение  aek – afh + bfg – bdk + cdh – ceg,  если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.

Прислать комментарий     Решение

Задача 36045

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 6,7

Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?

Прислать комментарий     Решение

Задача 76462

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 3
Классы: 8,9

Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .