ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В круге даны две взаимно перпендикулярные хорды. Каждая из них делится другой хордой на два отрезка, равных 3 и 7. Найдите расстояние от центра окружности до каждой хорды.

   Решение

Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 7526]      



Задача 52357

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Признаки подобия ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
  а) треугольник AA1C подобен треугольнику BB1C;
  б) треугольник ABC подобен треугольнику A1B1C.
  в) Найдите коэффициент подобия треугольников A1B1C и ABC, если  ∠C = γ.

Прислать комментарий     Решение

Задача 52378

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

Прислать комментарий     Решение

Задача 52488

Темы:   [ Угол между касательной и хордой ]
[ Взаимное расположение двух окружностей ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.

Прислать комментарий     Решение

Задача 52523

Темы:   [ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Теорема синусов ]
Сложность: 3-
Классы: 8,9

На сторонах угла ABC, равного 120o, отложены отрезки AB = BC = 4. Через точки A, B, C проведена окружность. Найдите её радиус.

Прислать комментарий     Решение


Задача 52529

Темы:   [ Диаметр, основные свойства ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9

В круге даны две взаимно перпендикулярные хорды. Каждая из них делится другой хордой на два отрезка, равных 3 и 7. Найдите расстояние от центра окружности до каждой хорды.

Прислать комментарий     Решение


Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .