ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

   Решение

Задачи

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 7526]      



Задача 52567

Темы:   [ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

Окружность разделена в отношении 7:11:6, и точки деления соединены между собой. Найдите углы полученного треугольника.

Прислать комментарий     Решение


Задача 52585

Темы:   [ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

M — середина высоты BD в равнобедренном треугольнике ABC. Точка M служит центром окружности радиуса MD. Найдите угловую величину дуги окружности, заключённой между сторонами BA и BC, если $ \angle$BAC = 65o.

Прислать комментарий     Решение


Задача 52604

Темы:   [ Признаки и свойства касательной ]
[ Вписанный угол равен половине центрального ]
Сложность: 3-
Классы: 8,9

Внутри данной окружности находится другая окружность; ABC и ADE — хорды большей окружности, касающиеся меньшей окружности в точках B и D; BMD — меньшая из двух дуг между точками касания; CNE — дуга между концами хорд. Найдите угловую величину дуги CNE, если дуга BMD содержит 130o.

Прислать комментарий     Решение


Задача 52605

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 3-
Классы: 8,9

Внутри данной окружности находится другая окружность. CAE и DBF - две хорды большей окружности (не пересекающиеся), касающиеся меньшей окружности в точках A и B;CND, EPF - дуги между концами хорд. Найдите угловую величину дуги CND, если дуги AMB и EPF содержат соответственно 154o и 70o.

Прислать комментарий     Решение


Задача 52698

Темы:   [ Ромбы. Признаки и свойства ]
[ Описанные четырехугольники ]
Сложность: 3-
Классы: 8,9

Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

Прислать комментарий     Решение


Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .