ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три окружности разных радиусов попарно касаются друг друга внешним образом. Отрезки, соединяющие их центры, образуют прямоугольный треугольник. Найдите радиус меньшей окружности, если радиусы большей и средней равны 6 и 4.

   Решение

Задачи

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 6702]      



Задача 52694

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.
Прислать комментарий     Решение


Задача 52712

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная, пересекающая две бóльшие стороны.
Найдите периметр отсечённого треугольника.

Прислать комментарий     Решение

Задача 52717

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Три окружности разных радиусов попарно касаются друг друга внешним образом. Отрезки, соединяющие их центры, образуют прямоугольный треугольник. Найдите радиус меньшей окружности, если радиусы большей и средней равны 6 и 4.

Прислать комментарий     Решение

Задача 52719

Темы:   [ Касающиеся окружности ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Три окружности радиусов 6, 7 и 8 попарно касаются друг друга внешним образом. Найдите площадь треугольника с вершинами в центрах этих окружностей.
Прислать комментарий     Решение


Задача 52723

Темы:   [ Общая касательная к двум окружностям ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Расстояние между центрами непересекающихся окружностей равно a . Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности и найдите её радиус.
Прислать комментарий     Решение


Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .