Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Вниз   Решение


Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

ВверхВниз   Решение


Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

ВверхВниз   Решение


На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.

ВверхВниз   Решение


Выбрать 100 чисел, удовлетворяющих условиям  x1 = 1,  0 ≤ x1 ≤ 2x1,  0 ≤ x3 ≤ 2x2,  ...,  0 ≤ x99 ≤ 2x98,  0 ≤ x100 ≤ 2x99, так, чтобы выражение
x1x2 + x3x4 + ... + x99x100  было максимально.

ВверхВниз   Решение


Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

Вверх   Решение

Задачи

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 6702]      



Задача 52888

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25.

Прислать комментарий     Решение

Задача 52889

Темы:   [ Общая касательная к двум окружностям ]
[ Теорема Пифагора (прямая и обратная) ]
[ Взаимное расположение двух окружностей ]
Сложность: 3
Классы: 8,9

Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

Прислать комментарий     Решение

Задача 52891

Темы:   [ Диаметр, основные свойства ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

Прислать комментарий     Решение

Задача 52896

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении  17 : 15.  Основание равно 60. Найдите радиус этой окружности.

Прислать комментарий     Решение

Задача 52897

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса.

Прислать комментарий     Решение

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .