ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции. Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.
Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а
сумма всех чисел из набора равна 100. В треугольнике ABC проведены медианы AM и BP. Известно, что ∠APB = ∠BMA, cos∠ACB = 0,8, BP = 1. Найдите площадь треугольника ABC . Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если: |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 7526]
Отрезки AB и CD пересекаются под прямым углом и AC = AD. Докажите, что BC = BD и ∠ACB = ∠ADB.
Даны два треугольника: ABC и A1B1C1. Известно, что AB = A1B1, AC = A1C1, ∠A = ∠A1. На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что AK = A1K1, LC = L1C1. Докажите, что KL = K1L1 и AL = A1L1.
В равнобедренном треугольнике ABC с основанием AC и углом
при вершине B, равным 36°, проведена биссектриса AD.
Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если ∠A = 70°, ∠C = 80°.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке