Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

На прямоугольном экране размером m×n, разбитом на единичные клетки, светятся более  (m – 1)(n – 1)  клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.

Вниз   Решение


Сумма 123 чисел равна 3813. Доказать, что из этих чисел можно выбрать 100 с суммой не меньше 3100.

ВверхВниз   Решение


Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

ВверхВниз   Решение


Докажите, что уравнение   x/y + y/z + z/x = 1   неразрешимо в натуральных числах.

ВверхВниз   Решение


Сколькими способами можно прочитать слово "строка", двигаясь вправо или вниз?:
С Т Р О К А
Т Р О К А
Р О К А
О К А
К А
А

ВверхВниз   Решение


Известно, что  a + b + c = 5  и  ab + bc + ac = 5.  Чему может равняться  a² + b² + c²?

ВверхВниз   Решение


Сложить из одинаковых кирпичиков (см. рис.) выпуклый многогранник.

ВверхВниз   Решение


Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
  а) можно заполнить девять карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
  б) восьми карточек для этого недостаточно.

ВверхВниз   Решение


Сколькими способами можно разложить семь монет различного достоинства по трём карманам?

ВверхВниз   Решение


Cколько существует различных семизначных телефонных номеров (cчитается, что номер начинаться с нуля не может)?

ВверхВниз   Решение


Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?

ВверхВниз   Решение


Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 32064  (#06)

Тема:   [ Формулы сокращенного умножения (прочее) ]
Сложность: 2+
Классы: 7,8,9

Известно, что  a + b + c = 5  и  ab + bc + ac = 5.  Чему может равняться  a² + b² + c²?

Прислать комментарий     Решение

Задача 79654  (#07)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 6,7,8

В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.

Прислать комментарий     Решение

Задача 53380  (#08)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Ломаные ]
Сложность: 3
Классы: 7,8,9

Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Прислать комментарий     Решение

Задача 32067  (#09)

Темы:   [ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7,8

Верно ли, что из любых 10 отрезков найдутся три, из которых можно составить треугольник?

Прислать комментарий     Решение


Задача 32068  (#10)

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Раскраски ]
Сложность: 3
Классы: 6,7,8

Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .