Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Вниз   Решение


Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса.

ВверхВниз   Решение


Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.

ВверхВниз   Решение


Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года.

ВверхВниз   Решение


Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.

ВверхВниз   Решение


Через центр окружности, вписанной в трапецию, проведена прямая, параллельная основаниям.
Докажите, что отрезок этой прямой, заключённый между боковыми сторонами, равен четверти периметра трапеции.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 6702]      



Задача 53552

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

Прислать комментарий     Решение

Задача 53566

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

Прислать комментарий     Решение


Задача 53567

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
Сложность: 2+
Классы: 8,9

Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 53730

Темы:   [ Вневписанные окружности ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

Прислать комментарий     Решение

Задача 53731

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
Сложность: 2+
Классы: 8,9

Через центр окружности, вписанной в трапецию, проведена прямая, параллельная основаниям.
Докажите, что отрезок этой прямой, заключённый между боковыми сторонами, равен четверти периметра трапеции.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .