Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если  BC = 12.

Вниз   Решение


Восстановите цифры. Восстановите цифры в следующем примере на деление


ВверхВниз   Решение


Докажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20.  33 богатыря передают листок друг другу, и каждый или прибавляет к числу, или отнимает от него единицу. Может ли в результате получиться число 10?

ВверхВниз   Решение


Доказать, что  (1 + ⅓)(1 + ⅛)(1 + 1/15)...(1 + 1/n²+2n) < 2  при любом натуральном n.

ВверхВниз   Решение


В четырёхугольнике MNPQ расположены две непересекающиеся окружности так, что одна из них касается сторон MN, NP, PQ, а другая – сторон MN, MQ, PQ. Точки B и A лежат соответственно на сторонах MN и PQ, причём отрезок AB касается обеих окружностей. Найдите длину стороны MQ, если  NP = b  и периметр четырёхугольника BAQM больше периметра четырёхугольника ABNP на величину 2p.

ВверхВниз   Решение


Хорда, перпендикулярная диаметру окружности, делит его в отношении  1 : 3.  Под какими углами видна хорда из концов этого диаметра?

Вверх   Решение

Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 6702]      



Задача 54041

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Поворот (прочее) ]
Сложность: 3
Классы: 8,9

Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что  C2B2 || AC.

Прислать комментарий     Решение

Задача 54042

Тема:   [ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

Основание H высоты CH прямоугольного треугольника ABC соединили с серединами M и N катетов AC и BC.
Докажите, что периметр четырёхугольника CMHN равен сумме катетов треугольника ABC.

Прислать комментарий     Решение

Задача 54047

Темы:   [ Хорды и секущие (прочее) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.

Прислать комментарий     Решение

Задача 54049

Тема:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Хорда, перпендикулярная диаметру окружности, делит его в отношении  1 : 3.  Под какими углами видна хорда из концов этого диаметра?

Прислать комментарий     Решение

Задача 54057

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки.
Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .