ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Противоположные стороны шестиугольника попарно равны и параллельны.
Докажите, что отрезки, соединяющие противоположные вершины, пересекаются в одной точке.

   Решение

Задачи

Страница: << 151 152 153 154 155 156 157 >> [Всего задач: 6702]      



Задача 54096

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Противоположные стороны шестиугольника попарно равны и параллельны.
Докажите, что отрезки, соединяющие противоположные вершины, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54114

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Докажите, что сумма расстояний от произвольной точки, лежащей на основании равнобедренного треугольника, до боковых сторон постоянна.

Прислать комментарий     Решение

Задача 54126

Темы:   [ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов.

Прислать комментарий     Решение

Задача 54138

Темы:   [ Средняя линия треугольника ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9


В выпуклом четырёхугольнике ABCD отрезок, соединяющий середины диагоналей, равен отрезку, соединяющему середины сторон AD и BC . Найдите угол, образованный продолжением сторон AB и CD .
Прислать комментарий     Решение


Задача 54141

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Две медианы треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Страница: << 151 152 153 154 155 156 157 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .