ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Постройте треугольник по биссектрисе, медиане и высоте, проведенным из одной вершины.

Вниз   Решение


Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
  а) жалованье между отрядами Черномор распределяет как ему угодно;
  б) жалованье между отрядами Черномор распределяет поровну?

ВверхВниз   Решение


Докажите, что проекции точки пересечения диагоналей вписанного четырехугольника на его стороны являются вершинами описанного четырехугольника, если только они не попадают на продолжения сторон.

ВверхВниз   Решение


Две стороны треугольника равны 25 и 30, а высота, проведённая к третьей, равна 24. Найдите третью сторону.

Вверх   Решение

Задачи

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 6702]      



Задача 54239

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

Катеты прямоугольного треугольника относятся как 3:7, а высота, опущенная на гипотенузу, равна 42. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение

Задача 54240

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Один из катетов прямоугольного треугольника равен 15, а проекция другого катета на гипотенузу равна 16. Найдите радиус вписанной окружности.

Прислать комментарий     Решение

Задача 54241

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Две стороны треугольника равны 25 и 30, а высота, проведённая к третьей, равна 24. Найдите третью сторону.

Прислать комментарий     Решение

Задача 54242

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Против большей стороны лежит больший угол ]
Сложность: 3
Классы: 8,9

В треугольнике больший угол при основании равен 45°, а высота делит основание на отрезки, равные 20 и 21. Найдите большую боковую сторону.

Прислать комментарий     Решение

Задача 54248

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведена высота AD. Докажите, что  AB² – AC² = BM² – CM²,  где M – произвольная точка высоты AD.

Прислать комментарий     Решение

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .