ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

   Решение

Задачи

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 7526]      



Задача 54767

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

Прислать комментарий     Решение

Задача 54911

Темы:   [ Теорема синусов ]
[ Признаки и свойства параллелограмма ]
Сложность: 3-
Классы: 8,9

Диагональ параллелограмма делит его угол на части в 30o и 45o. Найдите отношение сторон параллелограмма.

Прислать комментарий     Решение


Задача 54946

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Элементарные (основные) построения циркулем и линейкой ]
Сложность: 3-
Классы: 8,9

С помощью циркуля и линейки разделите данный треугольник на три равновеликих треугольника прямыми, выходящими из одной вершины.

Прислать комментарий     Решение


Задача 54950

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3-
Классы: 8,9

На стороне AB треугольника ABC взяты точки M и N, причём AM : MN : NB = 2 : 2 : 1, а на стороне AC — точка K, причём AK : KC = 1 : 2. Найдите площадь треугольника MNK, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение


Задача 54953

Темы:   [ Отношение площадей подобных треугольников ]
[ Признаки подобия ]
Сложность: 3-
Классы: 8,9

Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне AC.
Найдите площадь части треугольника, заключённой между этими прямыми, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .