ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Трапеция разбита диагоналями на четыре треугольника. Докажите, что треугольники, прилежащие к боковым сторонам, равновелики. Решение |
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 6702]
С помощью циркуля и линейки разделите данный треугольник на три равновеликих треугольника прямыми, выходящими из одной вершины.
На стороне AB треугольника ABC взяты точки M и N, причём AM : MN : NB = 2 : 2 : 1, а на стороне AC — точка K, причём AK : KC = 1 : 2. Найдите площадь треугольника MNK, если площадь треугольника ABC равна 1.
Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне AC.
Трапеция разбита диагоналями на четыре треугольника. Докажите, что треугольники, прилежащие к боковым сторонам, равновелики.
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 6702] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|