ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

   Решение

Задачи

Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]      



Задача 55039

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Неопределено ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что  SABC = 2 SBCD,  а  SABD = 3 SACD.  Найдите площади треугольников ABC, ACD, ADB и BCD.

Прислать комментарий     Решение

Задача 55075

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

Прислать комментарий     Решение

Задача 55090

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

Прислать комментарий     Решение

Задача 55145

Темы:   [ Против большей стороны лежит больший угол ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что:
  a) против большей стороны треугольника лежит больший угол;
  б) против большего угла треугольника лежит большая сторона.

Прислать комментарий     Решение

Задача 55152

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 8,9

Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.

Прислать комментарий     Решение


Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .