Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?

Вниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

ВверхВниз   Решение


С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1.

ВверхВниз   Решение


Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

ВверхВниз   Решение


Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

ВверхВниз   Решение


Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .

ВверхВниз   Решение


Колода перфокарт четырёх цветов разложена в один ряд. Если две перфокарты одного цвета лежат рядом или через одну, то можно выбрасывать ту из них, которая левее. Кроме того, можно подкладывать справа любое количество перфокарт из других колод. Доказать, что можно подкладывать и выбрасывать перфокарты таким образом, чтобы в конце концов их осталось только четыре.

ВверхВниз   Решение


Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B , пересекает окружность меньшего радиуса в точке A, а большего радиуса – в точке C. Найдите BC, если  AC = 3

ВверхВниз   Решение


Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

ВверхВниз   Решение


Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

Вверх   Решение

Задачи

Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]      



Задача 55039

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Неопределено ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что  SABC = 2 SBCD,  а  SABD = 3 SACD.  Найдите площади треугольников ABC, ACD, ADB и BCD.

Прислать комментарий     Решение

Задача 55075

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

Прислать комментарий     Решение

Задача 55090

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

Прислать комментарий     Решение

Задача 55145

Темы:   [ Против большей стороны лежит больший угол ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что:
  a) против большей стороны треугольника лежит больший угол;
  б) против большего угла треугольника лежит большая сторона.

Прислать комментарий     Решение

Задача 55152

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 8,9

Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.

Прислать комментарий     Решение


Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .