ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду? Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.
Докажите, что если a и b – две стороны треугольника, γ – угол
между ними и l – биссектриса этого угла, то
С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1. Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5. Две хорды окружности взаимно перпендикулярны. Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если ∠A = 70°, ∠C = 80°. В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC . Колода перфокарт четырёх цветов разложена в один ряд. Если две перфокарты одного цвета лежат рядом или через одну, то можно выбрасывать ту из них, которая левее. Кроме того, можно подкладывать справа любое количество перфокарт из других колод. Доказать, что можно подкладывать и выбрасывать перфокарты таким образом, чтобы в конце концов их осталось только четыре. Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B , пересекает окружность меньшего радиуса в точке A, а большего радиуса – в точке C. Найдите BC, если AC = 3 Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!. Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что AP = PK, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR. |
Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]
В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что SABC = 2 SBCD, а SABD = 3 SACD. Найдите площади треугольников ABC, ACD, ADB и BCD.
В параллелограмме ABCD на диагонали AC взята точка E, причём AE : EC = 1 : 3, а на стороне AD взята такая точка F, что AF : FD = 1 : 2. Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.
Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что AP = PK, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.
Докажите, что:
Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.
Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке