|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Постройте две прямые x и y так, чтобы для любой точки M на стороне AC сумма длин отрезков MXM и MYM, проведенных из точки M параллельно прямым x и y до пересечения со сторонами AB и BC треугольника, равнялась 1. Четырехзначное число начинается с цифры 6. Эту цифру переставили в конец числа. Полученное число оказалось на 1152 меньше исходного. Найдите исходное число. Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²). Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма? |
Страница: 1 2 3 >> [Всего задач: 13]
Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?
Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.
Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.
Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
Страница: 1 2 3 >> [Всего задач: 13] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|