ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Если все 6 граней параллелепипеда — равные между собой параллелограммы, то они суть ромбы. Докажите.

Вниз   Решение


Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.

ВверхВниз   Решение


На батоне колбасы нарисованы тонкие поперечные кольца. Если разрезать по красным кольцам, получится 5 кусков, если по желтым — 7 кусков, а если по зеленым — 11 кусков. Сколько кусков колбасы получится, если разрезать по кольцам всех трёх цветов?

ВверхВниз   Решение


В обменном пункте совершаются операции двух типов:
  1) дай 2 евро – получи 3 доллара и конфету в подарок;
  2) дай 5 долларов – получи 3 евро и конфету в подарок.
Когда богатенький Буратино пришел в обменник, у него были только доллары. Когда ушел – долларов стало поменьше, евро так и не появились, зато он получил 50 конфет. Во сколько долларов обошелся Буратино такой "подарок"?

ВверхВниз   Решение


В Лесогории живут только эльфы и гномы. Гномы лгут, говоря про своё золото, а в остальных случаях говорят правду. Эльфы лгут, говоря про гномов, а в остальных случаях говорят правду. Однажды два лесогорца сказали:
А: Всё моё золото я украл у Дракона.
Б: Ты лжешь.
Определите, эльфом или гномом является каждый из них.

ВверхВниз   Решение


Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.

ВверхВниз   Решение


Дан параллелограмм ABCD. Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N. Докажите, что точки пересечения отрезка MN с BC и CD лежат на вписанной окружности треугольника BCD.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 56662

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырехугольник ABCD описанный тогда и только тогда, когда окружности касаются.
Прислать комментарий     Решение


Задача 56663

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

Дан параллелограмм ABCD. Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N. Докажите, что точки пересечения отрезка MN с BC и CD лежат на вписанной окружности треугольника BCD.
Прислать комментарий     Решение


Задача 56664

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

На каждой стороне четырехугольника ABCD взято по две точки, и они соединены так, как показано на рис. Докажите, что если все пять заштрихованных четырехугольников описанные, то четырехугольник ABCD тоже описанный.


Прислать комментарий     Решение

Задача 56665

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком плюс, а участки пути, по которым мы удалялись от центра, — со знаком минус. Докажите, что для любого такого пути сумма длин участков пути, взятых с указанными знаками, равна нулю.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .