ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
M1, M2,..., M6 — середины сторон выпуклого
шестиугольника
A1A2...A6. Докажите, что существует
треугольник, стороны которого равны и параллельны отрезкам M1M2,
M3M4, M5M6.
Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты $100\times100$ и $1\times1$? На плоскости дано бесконечное множество прямоугольников, вершины
каждого из которых расположены в точках с координатами (0, 0), (0, m),
(n, 0), (n, m), где n и m — целые положительные числа
(свои для каждого прямоугольника). Докажите, что из этих прямоугольников
можно выбрать два так, чтобы один содержался в другом.
В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков. После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч? От потолка комнаты вертикально вниз по стене поползли две мухи. Спустившись до пола, они поползли обратно. Первая муха ползла в оба конца с одной и той же скоростью, а вторая хотя и поднималась вдвое медленнее первой, но зато спускалась
вдвое быстрее. На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах
клеток. Докажите, что если треугольник ABC остроугольный, то внутри или
на сторонах его есть по крайней мере еще одна вершина клетки.
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b. Даны отрезки, длины которых равны a, b и c. Постройте
отрезок длиной: a) ab/c; б)
Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение. Можно ли на плоскости расположить 1000 отрезков
так, чтобы каждый отрезок обоими концами упирался строго
внутрь других отрезков?
Сумма четырех единичных векторов равна нулю. Докажите, что их
можно разбить на две пары противоположных векторов.
Докажите, что 2n > (1 – x)n + (1 + x)n при целом n ≥ 2 и |x| < 1. В произведении семи натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 13 раз? За круглым вращающимся столом, на котором стоят 8 белых и 7 чёрных чашек, сидят 15 гномов. Они надели 8 белых и 7 чёрных колпачков. Каждый гном берёт себе чашку, цвет которой совпадает с цветом его колпачка, и ставит напротив себя, после этого стол поворачивается случайным образом. Какое наибольшее число совпадений цвета чашки и колпачка можно гарантировать после поворота стола (гномы сами выбирают, как сесть, но не знают, как повернётся стол)? Через точку P, лежащую на общей хорде AB двух
пересекающихся окружностей, проведены хорда KM первой
окружности и хорда LN второй окружности. Докажите, что
четырехугольник KLMN вписанный.
|
Страница: 1 2 >> [Всего задач: 6]
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
Через точку P, лежащую на общей хорде AB двух
пересекающихся окружностей, проведены хорда KM первой
окружности и хорда LN второй окружности. Докажите, что
четырехугольник KLMN вписанный.
В параллелограмме ABCD диагональ AC больше
диагонали BD; M — такая точка диагонали AC, что
четырехугольник BCDM вписанный. Докажите, что прямая BD
является общей касательной к описанным окружностям
треугольников ABM и ADM.
Прямая OA касается окружности в точке A, а хорда BC
параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Даны окружность S и точки A и B вне ее. Для
каждой прямой l, проходящей через точку A и пересекающей
окружность S в точках M и N, рассмотрим описанную
окружность треугольника BMN. Докажите, что все эти
окружности имеют общую точку, отличную от точки B.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке