ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 69]      



Задача 56771  (#04.021)

Тема:   [ Площадь четырехугольника ]
Сложность: 4
Классы: 9

На стороне AB четырехугольника ABCD взяты точки A1 и B1, а на стороне CD — точки C1 и D1, причем  AA1 = BB1 = pAB и  CC1 = DD1 = pCD, где p < 0, 5. Докажите, что  SA1B1C1D1/SABCD = 1 - 2p.
Прислать комментарий     Решение


Задача 56772  (#04.022)

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного.


Прислать комментарий     Решение

Задача 56773  (#04.023)

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

На каждой стороне параллелограмма взято по точке. Площадь четырехугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырехугольника параллельна стороне параллелограмма.
Прислать комментарий     Решение


Задача 56774  (#04.024)

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Точки K и M — середины сторон AB и CD выпуклого четырехугольника ABCD, точки L и N расположены на сторонах BC и AD так, что KLMN — прямоугольник. Докажите, что площадь четырехугольника ABCD вдвое больше площади прямоугольника KLMN.
Прислать комментарий     Решение


Задача 56775  (#04.025)

Тема:   [ Площадь четырехугольника ]
Сложность: 6
Классы: 9

Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .