|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Города A , B , C и D расположены так, что расстояние от C до A меньше, чем расстояние от D до A , а расстояние от C до B меньше, чем расстояние от D до B . Докажите, что расстояние от города C до любой точки прямолинейной дороги, соединяющей города A и B , меньше, чем расстояние от D до этой точки. Окружности Имеются две кучки конфет: в одной - 20, в другой - 21. За ход нужно съесть одну из кучек, а вторую разделить на две не обязательно равных кучки. Проигрывает тот, кто не может сделать ход. Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие? а) Докажите, что площадь выпуклого четырехугольника ABCD вычисляется по формуле
S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),
где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то S2 = (p - a)(p - b)(p - c)(p - d ). в) Докажите, что если четырехугольник ABCD описанный, то S2 = abcd sin2((B + D)/2). |
Страница: 1 [Всего задач: 4]
S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),
где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то S2 = (p - a)(p - b)(p - c)(p - d ). в) Докажите, что если четырехугольник ABCD описанный, то S2 = abcd sin2((B + D)/2).
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|