ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.

Вниз   Решение


Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?

ВверхВниз   Решение


Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB).

ВверхВниз   Решение


Известно, что в некотором треугольнике медиана, биссектриса и высота, проведенные из вершины C, делят угол на четыре равные части. Найдите углы этого треугольника.

ВверхВниз   Решение


Расшифровать пример на умножение, если буквой Ч зашифрованы чётные числа, а буквой Н – нечётные.

ВверхВниз   Решение


Найдите остаток от деления 2100 на 3.

ВверхВниз   Решение


Автор: Saghafian M.

Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?

ВверхВниз   Решение


На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?

ВверхВниз   Решение


Найдите уравнения эллипсов Штейнера в барицентрических координатах.

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56865

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.
Прислать комментарий     Решение


Задача 56866

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.
Прислать комментарий     Решение


Задача 53391

Темы:   [ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

Прислать комментарий     Решение

Задача 56867

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4
Классы: 8,9

а) Докажите, что если угол A треугольника ABC равен  120o, то центр описанной окружности и ортоцентр симметричны относительно биссектрисы внешнего угла A.
б) В треугольнике ABC угол A равен  60oO — центр описанной окружности, H — ортоцентр, I — центр вписанной окружности, а Ia — центр вневписанной окружности, касающейся стороны BC. Докажите, что IO = IH и IaO = IaH.
Прислать комментарий     Решение


Задача 56868

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

В треугольнике ABC угол A равен  120o. Докажите, что из отрезков длиной a, b, b + c можно составить треугольник.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .