ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что:
На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения
прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на
одной прямой (Папп).
Докажите, что
27Rr Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Начало координат является центром симметрии
выпуклой фигуры площадью более 4. Докажите, что эта
фигура содержит хотя бы одну точку с целыми координатами,
отличную от начала координат.
На бесконечном листе клетчатой бумаги N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади K.
Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A1 на прямой l1. Постройте
треугольник ABC так, чтобы точка A1 была серединой его
стороны BC, а прямые l1, l2 и l3 были серединными
перпендикулярами к сторонам.
Дано n прямых. Постройте n-угольник, для которого
эти прямые являются: а) серединными перпендикулярами
к сторонам; б) биссектрисами внешних или внутренних углов
при вершинах.
Прямые
AA1, BB1, CC1 пересекаются в одной точке O.
Докажите, что точки пересечения прямых AB и A1B1, BC
и B1C1, AC и A1C1 лежат на одной прямой (Дезарг).
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]
Прямые
AA1, BB1, CC1 пересекаются в одной точке O.
Докажите, что точки пересечения прямых AB и A1B1, BC
и B1C1, AC и A1C1 лежат на одной прямой (Дезарг).
Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения
прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на
одной прямой (Папп).
Дан выпуклый четырехугольник ABCD. Пусть P, Q —
точки пересечения продолжений противоположных сторон
AB и CD, AD и BC соответственно, R — произвольная
точка внутри четырехугольника. Пусть K — точка пересечения
прямых BC и PR, L — точка пересечения прямых AB и QR,
M — точка пересечения прямых AK и DR. Докажите, что
точки L, M и C лежат на одной прямой.
Даны два треугольника ABC и A1B1C1. Известно,
что прямые AA1, BB1 и CC1 пересекаются в одной точке O,
и прямые AB1, BC1 и CA1 пересекаются в одной точке O1.
Докажите, что прямые AC1, BA1 и CB1 тоже пересекаются
в одной точке O2 (теорема о дважды перспективных треугольниках).
Даны два треугольника ABC и A1B1C1. Известно, что
прямые AA1, BB1 и CC1 пересекаются в одной точке O,
прямые AA1, BC1 и CB1 пересекаются в одной точке O1
и прямые AC1, BB1 и CA1 пересекаются в одной точке O2.
Докажите, что прямые AB1, BA1 и CC1 тоже пересекаются
в одной точке O3 (теорема о трижды перспективных треугольниках).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке