ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Даны две точки A, B и прямая l. Постройте
окружность, проходящую через точки A, B и касающуюся прямой l.
Прямоугольник разбили двумя прямыми, параллельными его сторонам, на четыре прямоугольника. Один из них оказался квадратом, а периметры прямоугольников, соседних с ним, равны 20 см и 16 см. Найдите площадь исходного прямоугольника. Найдите m и n зная, что Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное. Найдите наименьшее значение выражения а4 – а2 – 2а. Четырехугольник ABCD выпуклый; точки
A1, B1, C1
и D1 таковы, что
AB||C1D1, AC||B1D1 и т. д. для всех
пар вершин. Докажите, что четырехугольник
A1B1C1D1 тоже
выпуклый, причем
Внутри треугольника ABC взята точка X. Прямая AX
пересекает описанную окружность в точке A1. В сегмент,
отсекаемый стороной BC, вписана окружность, касающаяся дуги
BC в точке A1, а стороны BC — в точке A2. Точки
B2 и C2 определяются аналогично. Докажите, что прямые
AA2, BB2 и CC2 пересекаются в одной точке.
|
Страница: << 1 2 3 4 [Всего задач: 20]
Через точки A и D, лежащие на окружности,
проведены касательные, пересекающиеся в точке S. На дуге AD
взяты точки B и C. Прямые AC и BD пересекаются в точке P, AB и CD — в точке Q. Докажите, что прямая PQ проходит через
точку S.
Вписанная окружность треугольника ABC касается его сторон в точках A1,
B1 и C1. Внутри треугольника ABC взята точка X. Прямая AX
пересекает дугу B1C1 вписанной окружности в точке A2; точки B2 и
C2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и
C1C2 пересекаются в одной точке.
Внутри треугольника ABC взята точка X. Прямая AX
пересекает описанную окружность в точке A1. В сегмент,
отсекаемый стороной BC, вписана окружность, касающаяся дуги
BC в точке A1, а стороны BC — в точке A2. Точки
B2 и C2 определяются аналогично. Докажите, что прямые
AA2, BB2 и CC2 пересекаются в одной точке.
а) На сторонах BC, CA и AB равнобедренного треугольника ABC с основанием AB взяты точки A1, B1 и C1 так, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что б) Внутри равнобедренного треугольника ABC с основанием AB взяты точки M и N так, что
В треугольнике ABC проведены биссектрисы AA1, BB1
и CC1. Биссектрисы AA1 и CC1 пересекают отрезки C1B1
и B1A1 в точках M и N. Докажите, что
Страница: << 1 2 3 4 [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке