ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точки A, B, C и P лежат на окружности с центром O. Стороны треугольника A1B1C1 параллельны прямым PA, PB, PC ( PA| B1C1 и т. д.). Через вершины треугольника A1B1C1 проведены прямые, параллельные сторонам треугольника ABC. а) Докажите, что эти прямые пересекаются в одной точке P1, которая лежит на описанной окружности треугольника A1B1C1. б) Докажите, что прямая Симсона точки P1 параллельна прямой OP. Решение |
Страница: << 1 2 3 [Всего задач: 15]
а) Докажите, что эти прямые пересекаются в одной точке P1, которая лежит на описанной окружности треугольника A1B1C1. б) Докажите, что прямая Симсона точки P1 параллельна прямой OP.
б) Докажите, что аналогично по индукции можно определить прямую Симсона вписанного n-угольника как прямую, содержащую проекции точки P на прямые Симсона всех (n - 1)-угольников, полученных выбрасыванием одной из вершин n-угольника.
Страница: << 1 2 3 [Всего задач: 15] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|