ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через каждую из точек пересечения продолжений сторон выпуклого четырехугольника ABCD проведено по две прямые. Эти прямые делят четырехугольник на девять четырехугольников.
а) Докажите, что если три из четырехугольников, примыкающих к вершинам A, B, C, D, описанные, то четвертый четырехугольник тоже описанный.
б) Докажите, что если ra, rb, rc, rd — радиусы окружностей, вписанных в четырехугольники, примыкающие к вершинам A, B, C, D, то

$\displaystyle {\frac{1}{r_a}}$ + $\displaystyle {\frac{1}{r_c}}$ = $\displaystyle {\frac{1}{r_b}}$ + $\displaystyle {\frac{1}{r_d}}$.


   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



Задача 57020  (#06.010.2)

Тема:   [ Описанные четырехугольники ]
Сложность: 6+
Классы: 8,9

Через каждую из точек пересечения продолжений сторон выпуклого четырехугольника ABCD проведено по две прямые. Эти прямые делят четырехугольник на девять четырехугольников.
а) Докажите, что если три из четырехугольников, примыкающих к вершинам A, B, C, D, описанные, то четвертый четырехугольник тоже описанный.
б) Докажите, что если ra, rb, rc, rd — радиусы окружностей, вписанных в четырехугольники, примыкающие к вершинам A, B, C, D, то

$\displaystyle {\frac{1}{r_a}}$ + $\displaystyle {\frac{1}{r_c}}$ = $\displaystyle {\frac{1}{r_b}}$ + $\displaystyle {\frac{1}{r_d}}$.


Прислать комментарий     Решение

Задача 57021  (#06.010.3)

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 6+
Классы: 8,9

Окружности S1 и S2, S2 и S3, S3 и S4, S4 и S1 касаются внешним образом. Докажите, что четыре общие касательные (в точках касания окружностей) либо пересекаются в одной точке, либо касаются одной окружности.
Прислать комментарий     Решение


Задача 57022  (#06.011)

Тема:   [ Описанные четырехугольники ]
Сложность: 6+
Классы: 8,9

Докажите, что точка пересечения диагоналей описанного четырехугольника совпадает с точкой пересечения диагоналей четырехугольника, вершинами которого служат точки касания сторон исходного четырехугольника с вписанной окружностью.
Прислать комментарий     Решение


Задача 57023  (#06.012)

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписанный; Hc и Hd — ортоцентры треугольников ABD и ABC. Докажите, что CDHcHd — параллелограмм.
Прислать комментарий     Решение


Задача 55536  (#06.013)

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .