ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Постройте треугольник по биссектрисе, медиане и высоте, проведенным из одной вершины.

Вниз   Решение


Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:
  а) жалованье между отрядами Черномор распределяет как ему угодно;
  б) жалованье между отрядами Черномор распределяет поровну?

ВверхВниз   Решение


Докажите, что проекции точки пересечения диагоналей вписанного четырехугольника на его стороны являются вершинами описанного четырехугольника, если только они не попадают на продолжения сторон.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 57018

Тема:   [ Описанные четырехугольники ]
Сложность: 5
Классы: 8,9

Через точки пересечения продолжений сторон выпуклого четырехугольника ABCD проведены две прямые, делящие его на четыре четырехугольника. Докажите, что если четырехугольники, примыкающие к вершинам B и D, описанные, то четырехугольник ABCD тоже описанный.
Прислать комментарий     Решение


Задача 57023

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписанный; Hc и Hd — ортоцентры треугольников ABD и ABC. Докажите, что CDHcHd — параллелограмм.
Прислать комментарий     Решение


Задача 57026

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Диагональ AC разбивает четырехугольник ABCD на два треугольника, вписанные окружности которых касаются диагонали AC в одной точке. Докажите, что вписанные окружности треугольников ABD и BCD тоже касаются диагонали BD в одной точке, а точки их касания со сторонами четырехугольника лежат на одной окружности.
Прислать комментарий     Решение


Задача 57027

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что проекции точки пересечения диагоналей вписанного четырехугольника на его стороны являются вершинами описанного четырехугольника, если только они не попадают на продолжения сторон.
Прислать комментарий     Решение


Задача 57028

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что если диагонали четырехугольника перпендикулярны, то проекции точки пересечения диагоналей на стороны являются вершинами вписанного четырехугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .