ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Профессии членов семьи. В семье Семеновых 5 человек: муж, жена, их сын, сестра мужа и отец жены. Все они работают. Один — инженер, другой — юрист, третий — слесарь, четвертый — экономист, пятый — учитель. Вот что еще известно о них. Юрист и учитель не кровные родственники. Слесарь — хороший спортсмен. Он пошел по стопам экономиста и играет в футбол за сборную завода. Инженер старше жены своего брата, но моложе, чем учитель. Экономист старше, чем слесарь. Назовите профессии каждого члена семьи Семеновых. Радиус вписанной окружности треугольника равен 1, длины
высот — целые числа. Докажите, что треугольник правильный.
Что больше 200! или 100200? Найти наибольшее значение, которое может принимать выражение aek – afh + bfg – bdk + cdh – ceg, если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1. Определим последовательности чисел (xn) и
(dn) условиями x1 = 1, xn+1 = [ На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться? Пусть z = e2πi/n = cos 2π/n + i sin 2π/n. Для произвольного целого a вычислите суммы Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки. Поезд двигался в одном направлении 5,5 часов. Известно, что за каждый отрезок времени длительностью 1 час он проезжал ровно 100 км. Можно ли утверждать, что:
Тройки чисел
(xn, yn, zn)
(n
xn + 1 =
а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен. б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0? Постройте треугольник по a, ha и b/c.
Докажите, что любое аффинное преобразование
можно представить в виде композиции растяжения (сжатия)
и аффинного преобразования, переводящего любой треугольник
в подобный ему треугольник.
В Заитильщине 57 деревень, между некоторыми из которых проложены дороги. Известно, что из каждой деревни можно попасть в любую другую, притом по единственному маршруту. Докажите, что если (m, 10) = 1, то существует репьюнит En, делящийся на m. Будет ли их бесконечно много? Все углы выпуклого шестиугольника ABCDEF равны.
Докажите, что
| BC - EF| = | DE - AB| = | AF - CD|.
|
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 110]
Противоположные стороны выпуклого шестиугольника ABCDEF
попарно параллельны. Докажите, что:
Все углы выпуклого шестиугольника ABCDEF равны.
Докажите, что
| BC - EF| = | DE - AB| = | AF - CD|.
Суммы углов при вершинах A, C, E и B, D, F выпуклого
шестиугольника ABCDEF с равными сторонами равны. Докажите, что
противоположные стороны этого шестиугольника параллельны.
Докажите, что если в выпуклом шестиугольнике
каждая из трех диагоналей, соединяющих противоположные
вершины, делит площадь пополам, то эти диагонали пересекаются в одной
точке.
Докажите, что если в выпуклом шестиугольнике
каждый из трех отрезков, соединяющих середины противоположных
сторон, делит площадь пополам, то эти отрезки пересекаются в одной
точке.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 110]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке