ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при  n ≥ 6  правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 110]      



Задача 57075  (#06.062)

Темы:   [ Правильные многоугольники ]
[ Раскраски ]
[ Поворот помогает решить задачу ]
[ Принцип крайнего (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9

Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Докажите, что среди этих многоугольников найдутся два равных.

Прислать комментарий     Решение

Задача 57076  (#06.063)

Темы:   [ Правильные многоугольники ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрический круг ]
Сложность: 5
Классы: 9

Докажите, что при  n ≥ 6  правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника.

Прислать комментарий     Решение

Задача 55373  (#06.064)

Темы:   [ Поворот помогает решить задачу ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9,10

Пусть О – центр правильного многоугольника A1A2A3...AnX – произвольная точка плоскости. Докажите, что:
   a)  


   б)   

Прислать комментарий     Решение

Задача 78798  (#06.065)

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

Прислать комментарий     Решение

Задача 57079  (#06.066)

Темы:   [ Правильные многоугольники ]
[ Неравенства с векторами ]
[ Центр масс ]
Сложность: 3
Классы: 9

Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .