|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность Докажите, что при n ≥ 6 правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника. |
Страница: << 1 2 3 4 5 [Всего задач: 24]
Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Докажите, что при n ≥ 6 правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника.
Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.
Докажите, что в правильном тридцатиугольнике A1...A30 следующие тройки диагоналей:
Страница: << 1 2 3 4 5 [Всего задач: 24] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|