ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для каких n существует выпуклый n-угольник, у которого одна сторона имеет длину 1, а длины всех диагоналей — целые числа?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 110]      



Задача 57100  (#06.087)

Тема:   [ Выпуклые многоугольники ]
Сложность: 4
Классы: 9

Какое наибольшее число острых углов может иметь выпуклый многоугольник?
Прислать комментарий     Решение


Задача 57101  (#06.088)

Тема:   [ Выпуклые многоугольники ]
Сложность: 5
Классы: 9

Сколько в выпуклом многоугольнике может быть сторон, равных по длине наибольшей диагонали?
Прислать комментарий     Решение


Задача 57102  (#06.089)

Тема:   [ Выпуклые многоугольники ]
Сложность: 5
Классы: 9

Для каких n существует выпуклый n-угольник, у которого одна сторона имеет длину 1, а длины всех диагоналей — целые числа?
Прислать комментарий     Решение


Задача 57103  (#06.090)

Тема:   [ Выпуклые многоугольники ]
Сложность: 5+
Классы: 9

Может ли выпуклый неправильный пятиугольник иметь ровно четыре стороны одинаковой длины и ровно четыре диагонали одинаковой длины?
Может ли в таком пятиугольнике пятая сторона иметь общую точку с пятой диагональю?
Прислать комментарий     Решение


Задача 57104  (#06.091)

Тема:   [ Выпуклые многоугольники ]
Сложность: 5+
Классы: 9

Точка O, лежащая внутри выпуклого многоугольника, образует с каждыми двумя его вершинами равнобедренный треугольник. Докажите, что точка O равноудалена от вершин этого многоугольника.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .