ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что для любого натурального m существует число Фибоначчи Fn  (n ≥ 1),  кратное m.

Вниз   Решение


Дана функция f(x)= . Найдите f(.. f(f(19))..)95 раз .

ВверхВниз   Решение


Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа a и b и заменить их суммой ab + a + b. Какое число может получиться после 19 таких операций?

ВверхВниз   Решение


Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и $ \angle$A.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 57216

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Потроить треугольник по высоте к стороне a ha, медиане к стороне a ma и высоте к стороне b hb.
Прислать комментарий     Решение


Задача 57217

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Потроить треугольник по сторонам a и b и медиане к стороне c mc.
Прислать комментарий     Решение


Задача 57218

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5
Классы: 8,9

Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и $ \angle$A.
Прислать комментарий     Решение


Задача 57219

Темы:   [ Построение треугольников по различным элементам ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 5
Классы: 8,9

Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.
Прислать комментарий     Решение


Задача 57220

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5+
Классы: 8,9

Потроить треугольник по $ \angle$A, высоте к стороне a ha и полупериметру p.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .