ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности S1 и S2 пересекаются в точках A и P.
Через точку A проведена касательная AB к окружности S1,
а через точку P — прямая CD, параллельная AB (точки B
и C лежат на S2, точка D — на S1). Докажите,
что ABCD — параллелограмм.
В трапеции ABCD боковая сторона AD перпендикулярна основаниям и равна 9, CD = 12, а отрезок AO, где O — точка пересечения диагоналей трапеции, равен 6. Найдите площадь треугольника BOC.
На плоскости сидят кузнечик Коля и 2020 его товарищей. Коля собирается совершить прыжок через каждого из остальных кузнечиков (в произвольном порядке) так, что начальная и конечная точка каждого прыжка симметричны относительно перепрыгиваемого кузнечика. Назовём точку финишной, если Коля может в неё попасть после 2020-го прыжка. При каком наибольшем числе $N$ найдётся начальная расстановка кузнечиков, для которой имеется ровно $N$ различных возможных финишных точек?
В прямоугольном треугольнике ABC высота, опущенная на гипотенузу AB, равна a, а биссектриса прямого угла равна b. Найдите площадь треугольника ABC.
Две окружности пересекаются в точках A и K. Их центры
расположены по разные стороны от прямой, содержащей отрезок AK.
Точки B и C лежат на разных окружностях. Прямая AB касается одной окружности в точке A. Прямая AC касается другой окружности также в точке A, BK = 1, CK = 4,
tg∠BAC = В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?
Диаметр AB окружности равен 1. На нем отложен отрезок AC, равный a. Проведена также хорда AD, равная b. Из точки C восстановлен перпендикуляр к AB, пересекающий хорду AD в точке E, а из точки D опущен перпендикуляр DF на AB (см. рисунок). Оказалось, что AE = AF. Докажите, что a = b3.
В трапеции ABCD отрезки AB и CD являются основаниями.
Диагонали трапеции пересекаются в точке E. Найдите площадь
треугольника BCE, если AB = 30, DC = 24, AD = 3 и
Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры. В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$. Медианы AA1 и BB1 треугольника ABC пересекаются
в точке M. Докажите, что если четырехугольник A1MB1C описанный,
то AC = BC.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]
Докажите, что если a > b, то ma < mb.
Медианы AA1 и BB1 треугольника ABC пересекаются
в точке M. Докажите, что если четырехугольник A1MB1C описанный,
то AC = BC.
Периметры треугольников ABM, BCM и ACM, где M —
точка пересечения медиан треугольника ABC, равны. Докажите, что
треугольник ABC правильный.
а) Докажите, что если a, b, c — длины сторон
произвольного треугольника, то
a2 + b2
а) Докажите, что
ma2 + mb2 + mc2
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке