Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Длины двух сторон треугольника равны a, а длина третьей стороны равна b. Вычислите радиус его описанной окружности.

Вниз   Решение


Диагонали равнобедренной трапеции ABCD с боковой стороной AB пересекаются в точке P. Докажите, что центр O ее описанной окружности лежит на описанной окружности треугольника APB.

ВверхВниз   Решение


Пусть  p = am10m + am–110m–1 + ... + a0  – простое число, записанное в десятичной системе счисления. Докажите, что многочлен
P(x) = amxm + am–1xm–1 + ... + a1x + a0  неприводим над целыми числами.

ВверхВниз   Решение


Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда центры этих поворотных гомотетий совпадают.

ВверхВниз   Решение


Докажите, что  ha + hb + hc $ \geq$ 9r.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 57416

Тема:   [ Неравенства с высотами ]
Сложность: 2
Классы: 8,9

Докажите, что в любом треугольнике сумма длин высот меньше периметра.
Прислать комментарий     Решение


Задача 57417

Тема:   [ Неравенства с высотами ]
Сложность: 2+
Классы: 8,9

Две высоты треугольника больше 1. Докажите, что его площадь больше 1/2.
Прислать комментарий     Решение


Задача 57418

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

В треугольнике ABC высота AM не меньше BC, а высота BH не меньше AC. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Задача 57419

Темы:   [ Неравенства с высотами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что  $ {\frac{1}{2r}}$ < $ {\frac{1}{h_a}}$ + $ {\frac{1}{h_b}}$ < $ {\frac{1}{r}}$.
Прислать комментарий     Решение


Задача 57420

Тема:   [ Неравенства с высотами ]
Сложность: 3
Классы: 8,9

Докажите, что  ha + hb + hc $ \geq$ 9r.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .