Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

Вниз   Решение


На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

ВверхВниз   Решение


Постройте образ точки A при инверсии относительно окружности S с центром O.

ВверхВниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

ВверхВниз   Решение


а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

ВверхВниз   Решение


Решая задачу:   "Какое значение принимает выражение  x2000 + x1999 + x1998 + 1000x1000 + 1000x999 + 1000x998 + 2000x³ + 2000x² + 2000x + 3000
(x – действительное число), если  x² + x + 1 = 0?",  Вася получил ответ 3000. Прав ли Вася?

ВверхВниз   Решение


Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

ВверхВниз   Решение


Докажите, что выпуклый пятиугольник ABCDE с равными сторонами, углы которого удовлетворяют неравенствам  $ \angle$A $ \geq$ $ \angle$B $ \geq$ $ \angle$C $ \geq$ $ \angle$D $ \geq$ $ \angle$E, является правильным.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57470

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2
Классы: 9

Докажите, что  $ \angle$ABC < $ \angle$BAC тогда и только тогда, когда AC < BC, т. е. против большего угла треугольника лежит большая сторона, а против большей стороны лежит больший угол.
Прислать комментарий     Решение


Задача 57471

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2
Классы: 9

Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.
Прислать комментарий     Решение


Задача 57472

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 4+
Классы: 9

Пусть ABCD и  A1B1C1D1 — два выпуклых четырехугольника с соответственно равными сторонами. Докажите, что если  $ \angle$A > $ \angle$A1, то  $ \angle$B < $ \angle$B1,$ \angle$C > $ \angle$C1,$ \angle$D < $ \angle$D1.
Прислать комментарий     Решение


Задача 57473

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 4+
Классы: 9

В остроугольном треугольнике ABC наибольшая из высот AH равна медиане BM. Докажите, что  $ \angle$B $ \leq$ 60o.
Прислать комментарий     Решение


Задача 57474

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 5
Классы: 9

Докажите, что выпуклый пятиугольник ABCDE с равными сторонами, углы которого удовлетворяют неравенствам  $ \angle$A $ \geq$ $ \angle$B $ \geq$ $ \angle$C $ \geq$ $ \angle$D $ \geq$ $ \angle$E, является правильным.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .