Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC.

Вниз   Решение


Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

ВверхВниз   Решение


На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



ВверхВниз   Решение


При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

ВверхВниз   Решение


На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

ВверхВниз   Решение


Разложите  P(x + 3)  по степеням x, где  P(x) = x4x3 + 1.

ВверхВниз   Решение


В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

ВверхВниз   Решение


Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

ВверхВниз   Решение


Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


Вверх   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]      



Задача 57484  (#10.073)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 5
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  ma2 + mb2 > 29r2.
Прислать комментарий     Решение


Задача 57485  (#10.074)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$.


Прислать комментарий     Решение

Задача 57486  (#10.075)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


Прислать комментарий     Решение

Задача 57487  (#10.076)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что если треугольник не тупоугольный, то  ma + mb + mc $ \geq$ 4R.
Прислать комментарий     Решение


Задача 57488  (#10.077)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что если в остроугольном треугольнике  ha = lb = mc, то этот треугольник равносторонний.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .