ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC. Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение. На плоскости даны две неконцентрические
окружности S1 и S2. Докажите, что геометрическим местом точек,
для которых степень относительно S1 равна степени
относительно S2, является прямая.
При каком положительном значении p уравнения 3x² – 4px + 9 = 0 и x² – 2px + 5 = 0 имеют общий корень? На плоскости даны три окружности, центры которых
не лежат на одной прямой. Проведем радикальные оси для
каждой пары этих окружностей. Докажите, что все три
радикальные оси пересекаются в одной точке.
Разложите P(x + 3) по степеням x, где P(x) = x4 – x3 + 1. В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых. Докажите неравенство nn+1 > (n + 1)n для натуральных n > 2. Докажите неравенство для натуральных n: Известно, что доля блондинов среди голубоглазых больше чем доля блондинов
среди всех людей. Докажите, что для остроугольного треугольника |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]
ABC - прямоугольный треугольник с прямым углом C. Докажите, что
ma2 + mb2 > 29r2.
Докажите, что для остроугольного треугольника
Докажите, что для остроугольного треугольника
Докажите, что если треугольник не тупоугольный,
то
ma + mb + mc
Докажите, что если в остроугольном
треугольнике
ha = lb = mc, то этот треугольник равносторонний.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке