ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Площадь треугольника ABC равна 1. Пусть A1, B1, C1 — середины сторон BC, CA, AB соответственно. На отрезках AB1, CA1, BC1 взяты точки K, L, M соответственно. Чему равна минимальная площадь общей части треугольников KLM и A1B1C1? Решение |
Страница: << 1 2 3 [Всего задач: 13]
Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).
Страница: << 1 2 3 [Всего задач: 13] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|