ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что ∠BHP = 90°. Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что AP = CQ. Обозначим вершины и точки звеньев (неправильной) пятиконечной звезды так, как показано на рис. Докажите, что
A1C . B1D . C1E . D1A . E1B = A1D . B1E . C1A . D1B . E1C.
На доске была начерчена трапеция ABCD (AD| BC)
и проведены перпендикуляр OK из точки O пересечения диагоналей на
основание AD и средняя линия EF. Затем трапецию стерли. Как
восстановить чертеж по сохранившимся отрезкам OK и EF?
Докажите, что любой прямоугольник можно разрезать на части и
сложить из них прямоугольник со стороной 1.
Даны четыре попарно непараллельных вектора, сумма которых равна
нулю. Докажите, что из них можно составить:
а) невыпуклый четырехугольник; б) самопересекающуюся
четырехзвенную ломаную.
|
Страница: << 1 2 [Всего задач: 10]
Пусть E и F — середины сторон AB и CD четырехугольника
ABCD, K, L, M и N — середины отрезков AF, CE,
BF и DE. Докажите, что KLMN — параллелограмм.
Дано n попарно не сонаправленных векторов (n
Даны четыре попарно непараллельных вектора, сумма которых равна
нулю. Докажите, что из них можно составить:
а) невыпуклый четырехугольник; б) самопересекающуюся
четырехзвенную ломаную.
Даны четыре попарно непараллельных вектора a, b, c и d, сумма которых равна нулю. Докажите, что
|a| + |b| + |c| + |d| > |a + b| + |a + c| + |a + d|.
В выпуклом пятиугольнике ABCDE сторона BC параллельна
диагонали AD,
CD || BE,
DE || AC и
AE || BD.
Докажите, что
AB || CE.
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке