ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что существует проективное преобразование, которое
данную окружность переводит в окружность, а данную точку, лежащую
внутри окружности, переводит в центр образа.
На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения
прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на
одной прямой (Папп).
Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Докажите, что
27Rr Начало координат является центром симметрии
выпуклой фигуры площадью более 4. Докажите, что эта
фигура содержит хотя бы одну точку с целыми координатами,
отличную от начала координат.
На бесконечном листе клетчатой бумаги N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади K.
Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A1 на прямой l1. Постройте
треугольник ABC так, чтобы точка A1 была серединой его
стороны BC, а прямые l1, l2 и l3 были серединными
перпендикулярами к сторонам.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]
Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A1 на прямой l1. Постройте
треугольник ABC так, чтобы точка A1 была серединой его
стороны BC, а прямые l1, l2 и l3 были серединными
перпендикулярами к сторонам.
Постройте треугольник ABC, если даны точки A, B
и прямая, на которой лежит биссектриса угла C.
Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A на прямой l1. Постройте треугольник
ABC так, чтобы точка A была его вершиной, а биссектрисы
треугольника лежали на прямых l1, l2 и l3.
Постройте треугольник по данным серединам двух
сторон и прямой, на которой лежит биссектриса, проведенная
к одной из этих сторон.
На биссектрисе внешнего угла C треугольника
ABC взята точка M, отличная от C. Докажите, что
MA + MB > CA + CB.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке