Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что:
а)  a = r(ctg($ \beta$/2) + ctg($ \gamma$/2)) = r cos($ \alpha$/2)/(sin($ \beta$/2)sin($ \gamma$/2));
б)  a = ra(tg($ \beta$/2) + tg($ \gamma$/2)) = racos($ \alpha$/2)/(cos($ \beta$/2)cos($ \gamma$/2));
в)  p - b = rctg($ \beta$/2) = ratg($ \gamma$/2);
г)  p = ractg($ \alpha$/2).

Вниз   Решение


На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

ВверхВниз   Решение


Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на одной прямой (Папп).

ВверхВниз   Решение


Докажите, что  27Rr $ \leq$ 2p2 $ \leq$ 27R2/2.

ВверхВниз   Решение


Из листа клетчатой бумаги размером 29×29 клеток вырезано 99 квадратиков размером 2×2 клетки. Докажите, что из него можно вырезать еще один такой квадратик.

ВверхВниз   Решение


Начало координат является центром симметрии выпуклой фигуры площадью более 4. Докажите, что эта фигура содержит хотя бы одну точку с целыми координатами, отличную от начала координат.

ВверхВниз   Решение


На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

ВверхВниз   Решение


Даны три прямые l1, l2 и l3, пересекающиеся в одной точке, и точка A1 на прямой l1. Постройте треугольник ABC так, чтобы точка A1 была серединой его стороны BC, а прямые l1, l2 и l3 были серединными перпендикулярами к сторонам.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



Задача 57878  (#17.012)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Даны три прямые l1, l2 и l3, пересекающиеся в одной точке, и точка A1 на прямой l1. Постройте треугольник ABC так, чтобы точка A1 была серединой его стороны BC, а прямые l1, l2 и l3 были серединными перпендикулярами к сторонам.
Прислать комментарий     Решение


Задача 57879  (#17.013)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC, если даны точки A, B и прямая, на которой лежит биссектриса угла C.
Прислать комментарий     Решение


Задача 57880  (#17.014)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Даны три прямые l1, l2 и l3, пересекающиеся в одной точке, и точка A на прямой l1. Постройте треугольник ABC так, чтобы точка A была его вершиной, а биссектрисы треугольника лежали на прямых l1, l2 и l3.
Прислать комментарий     Решение


Задача 57881  (#17.015)

Тема:   [ Симметрия и построения ]
Сложность: 4
Классы: 9

Постройте треугольник по данным серединам двух сторон и прямой, на которой лежит биссектриса, проведенная к одной из этих сторон.
Прислать комментарий     Решение


Задача 57882  (#17.016)

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .