ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.
Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел. Пусть M и N — середины сторон CD и DE правильного
шестиугольника ABCDEF, P — точка пересечения отрезков AM
и BN.
|
Страница: << 1 2 3 4 >> [Всего задач: 17]
На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что AP = BP + CP.
Найдите геометрическое место точек M, лежащих
внутри правильного треугольника ABC, для которых
MA2 = MB2 + MC2.
Шестиугольник ABCDEF правильный, K и M — середины
отрезков BD и EF. Докажите, что треугольник AMK правильный.
Пусть M и N — середины сторон CD и DE правильного
шестиугольника ABCDEF, P — точка пересечения отрезков AM
и BN.
На сторонах AB и BC правильного треугольника
ABC взяты точки M и N так, что MN| AC, E — середина
отрезка AN, D — центр треугольника BMN. Найдите величины
углов треугольника CDE.
Страница: << 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке