Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.

Вниз   Решение


а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

ВверхВниз   Решение


Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 55767

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Гомотетия (ГМТ) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Прислать комментарий     Решение


Задача 57989

Тема:   [ Гомотетичные окружности ]
Сложность: 4+
Классы: 9

а) Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — ее диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
б) В окружности проведены перпендикулярные диаметры AB и CD. Из точки M, лежащей вне окружности, проведены касательные к окружности, пересекающие прямую AB в точках E и H, а также прямые MC и MD, пересекающие прямую AB в точках F и K. Докажите, что EF = KH.
Прислать комментарий     Решение


Задача 57990

Тема:   [ Гомотетичные окружности ]
Сложность: 4+
Классы: 9

Пусть O — центр вписанной окружности треугольника ABC, D — точка касания ее со стороной AC, B1 — середина стороны AC. Докажите, что прямая B1O делит отрезок BD пополам.
Прислать комментарий     Решение


Задача 57991

Тема:   [ Гомотетичные окружности ]
Сложность: 5
Классы: 9

Окружности $ \alpha$, $ \beta$ и $ \gamma$ имеют одинаковые радиусы и касаются сторон углов A, B и C треугольника ABC соответственно. Окружность $ \delta$ касается внешним образом всех трех окружностей $ \alpha$, $ \beta$ и $ \gamma$. Докажите, что центр окружности $ \delta$ лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.
Прислать комментарий     Решение


Задача 57992

Тема:   [ Гомотетичные окружности ]
Сложность: 5
Классы: 9

Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .