ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждые две из 13 ЭВМ соединены своим проводом. Докажите, что если a > b, то ma < mb.
Увеличится или уменьшится сумма По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных
единице. Периметры треугольников ABM, BCM и ACM, где M —
точка пересечения медиан треугольника ABC, равны. Докажите, что
треугольник ABC правильный.
Докажите неравенство для положительных значений переменных: а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги. Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали. |
Страница: 1 2 >> [Всего задач: 10]
Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.
Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
В центре каждой клетки шахматной доски стоит
по фишке. Фишки переставили так, что попарные расстояния
между ними не уменьшились. Докажите, что в действительности
попарные расстояния не изменились.
Многоугольник разрезан на несколько многоугольников. Пусть p — количество
полученных многоугольников, q — количество отрезков, являющихся их
сторонами, r — количество точек, являющихся их вершинами. Докажите, что
p - q + r = 1.
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке