Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Четырёхугольник описан около окружности. Докажите, что прямые, соединяющие соседние точки касания и не пересекающиеся в одной из этих точек, пересекаются на продолжении диагонали или параллельны ей.

Вниз   Решение


На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.

ВверхВниз   Решение


Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

ВверхВниз   Решение


На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 58212  (#24.007)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на параллелограммы ]
[ Неравенства с площадями ]
[ Целочисленные решетки (прочее) ]
Сложность: 5
Классы: 9,10

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.
Прислать комментарий     Решение


Задача 58213  (#24.011)

Тема:   [ Целочисленные решетки (прочее) ]
Сложность: 5
Классы: 9,10

Докажите, что для любого n существует окружность, внутри которой лежит ровно n целочисленных точек.
Прислать комментарий     Решение


Задача 58214  (#24.012)

Тема:   [ Целочисленные решетки (прочее) ]
Сложность: 7
Классы: 9,10

Докажите, что для любого n существует окружность, на которой лежит ровно n целочисленных точек.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .