Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Вниз   Решение


В квадрате со стороной 1 проведено конечное число отрезков, параллельных его сторонам, причем эти отрезки могут пересекать друг друга. Сумма длин отрезков равна 18. Докажите, что площадь одной из частей, на которые разбит квадрат, не меньше 0,01.

ВверхВниз   Решение


Натуральные числа p и q взаимно просты. Отрезок  [0, 1]  разбит на  p + q  одинаковых отрезков.
Докажите, что в каждом из этих отрезков, кроме двух крайних лежит ровно одно из  p + q – 2  чисел  1/p, 2/p, ..., p–1/p1/q, 2/q, ..., q–1/q.

ВверхВниз   Решение


Докажите, что следующие свойства выпуклого многоугольника F эквивалентны: 1) F имеет центр симметрии; 2) F можно разрезать на параллелограммы.

ВверхВниз   Решение


Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя).

ВверхВниз   Решение


Правильный восьмиугольник со стороной 1 разрезан на параллелограммы. Докажите, что среди них есть по крайней мере два прямоугольника, причем сумма площадей всех прямоугольников равна 2.

ВверхВниз   Решение


а) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному.
б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58228  (#25.009)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 7,8

Разрежьте фигуру, изображенную на рис. на 4 равные части.


Прислать комментарий     Решение

Задача 58229  (#25.010)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 7,8

Существует ли треугольник, который можно разрезать: а) на 3 равных треугольника, подобных исходному?; б) на 5 треугольников, подобных исходному (не обязательно равных)?
Прислать комментарий     Решение


Задача 58230  (#25.011)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 5
Классы: 7,8

а) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному.
б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники.
Прислать комментарий     Решение


Задача 58231  (#25.012)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте квадрат на 8 остроугольных треугольников.
Прислать комментарий     Решение


Задача 58232  (#25.013)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два равных 5-угольника?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .