ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному.
б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58228  (#25.009)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 7,8

Разрежьте фигуру, изображенную на рис. на 4 равные части.


Прислать комментарий     Решение

Задача 58229  (#25.010)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 7,8

Существует ли треугольник, который можно разрезать: а) на 3 равных треугольника, подобных исходному?; б) на 5 треугольников, подобных исходному (не обязательно равных)?
Прислать комментарий     Решение


Задача 58230  (#25.011)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 5
Классы: 7,8

а) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному.
б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники.
Прислать комментарий     Решение


Задача 58231  (#25.012)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Разрежьте квадрат на 8 остроугольных треугольников.
Прислать комментарий     Решение


Задача 58232  (#25.013)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 6
Классы: 7,8

Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два равных 5-угольника?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .