ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм. В квадрате со стороной 1 проведено конечное число отрезков,
параллельных его сторонам, причем эти отрезки могут пересекать
друг друга. Сумма длин отрезков равна 18. Докажите, что площадь
одной из частей, на которые разбит квадрат, не меньше 0,01.
Натуральные числа p и q взаимно просты. Отрезок [0, 1] разбит на p + q одинаковых отрезков. Докажите, что следующие свойства выпуклого многоугольника F
эквивалентны: 1) F имеет центр симметрии;
2) F можно разрезать на параллелограммы.
Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя). Правильный восьмиугольник со стороной 1 разрезан
на параллелограммы. Докажите, что среди них есть по
крайней мере два прямоугольника, причем сумма площадей
всех прямоугольников равна 2.
а) Докажите, что любой неравносторонний треугольник можно
разрезать на неравные треугольники, подобные исходному.
|
Страница: 1 2 >> [Всего задач: 7]
Разрежьте фигуру, изображенную на рис.
на 4 равные части.
Существует ли треугольник, который можно разрезать: а) на 3 равных треугольника, подобных исходному?; б)
на 5 треугольников, подобных исходному (не обязательно равных)?
а) Докажите, что любой неравносторонний треугольник можно
разрезать на неравные треугольники, подобные исходному.
Разрежьте квадрат на 8 остроугольных треугольников.
Можно ли какой-нибудь невыпуклый 5-угольник разрезать на два
равных 5-угольника?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке