ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

Вниз   Решение


Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

ВверхВниз   Решение


Докажите, что число  30239 + 23930  составное.

ВверхВниз   Решение


В параллелограмме ABCD на диагонали AC взята точка E, причём  AE : EC = 1 : 3,  а на стороне AD взята такая точка F, что  AF : FD = 1 : 2.  Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.

ВверхВниз   Решение


На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны,  BM = BK,  AB = 15,  BK = 8,  CM = 9.
Найдите периметр треугольника СOK, где O – точка пересечения прямых AK и СМ.

ВверхВниз   Решение


Докажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным преобразованием можно перевести в четырехугольник, у которого противоположные углы прямые.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 58370

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

Докажите, что любое аффинное преобразование можно представить в виде композиции растяжения (сжатия) и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.
Прислать комментарий     Решение


Задача 58371

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

Докажите, что если аффинное преобразование переводит некоторую окружность в себя, то оно является либо поворотом, либо симметрией.
Прислать комментарий     Решение


Задача 58372

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

Докажите, что если M' и N' — образы многоугольников M и N при аффинном преобразовании, то отношение площадей M и N равно отношению площадей M' и N'.
Прислать комментарий     Решение


Задача 58373

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

Докажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным преобразованием можно перевести в четырехугольник, у которого противоположные углы прямые.
Прислать комментарий     Решение


Задача 58374

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

Докажите, что любой выпуклый шестиугольник ABCDEF, в котором каждая сторона параллельна противоположной стороне, аффинным преобразованием можно перевести в шестиугольник с равными диагоналями AD, BE и CF.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .