Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

Вниз   Решение


Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.

ВверхВниз   Решение


Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением

z($\displaystyle \bar{a}_{1}^{}$ - $\displaystyle \bar{a}_{2}^{}$) - $\displaystyle \bar{z}$(a1 - a2) + (a1$\displaystyle \bar{a}_{2}^{}$ - $\displaystyle \bar{a}_{1}^{}$a2) = 0.


Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



Задача 58390  (#29.024B)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Пусть a, b и c — комплексные числа, лежащие на единичной окружности с центром в нуле. Докажите, что комплексное число $ {\frac{1}{2}}$(a + b + c - $ \bar{a}$bc) соответствует основанию высоты, опущенной из вершины a на сторону bc.
Прислать комментарий     Решение


Задача 58391  (#29.026B-)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением

z($\displaystyle \bar{a}_{1}^{}$ - $\displaystyle \bar{a}_{2}^{}$) - $\displaystyle \bar{z}$(a1 - a2) + (a1$\displaystyle \bar{a}_{2}^{}$ - $\displaystyle \bar{a}_{1}^{}$a2) = 0.


Прислать комментарий     Решение

Задача 58392  (#29.025)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

а) Докажите, что все окружности и прямые задаются уравнениями вида

Az$\displaystyle \bar{z}$ + cz + $\displaystyle \bar{c}$$\displaystyle \bar{z}$ + D = 0,

где A и D — вещественные числа, а c — комплексное число. Наоборот, докажите, что любое уравнение такого вида задает либо окружность, либо прямую, либо точку, либо пустое множество.
б) Докажите, что при инверсии окружности и прямые переходят в окружности и прямые.
Прислать комментарий     Решение

Задача 58393  (#29.026B)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 4
Классы: 9,10

а) Пусть $ \varepsilon$ = $ {\frac{1}{2}}$ + $ {\frac{i\sqrt{3}}{2}}$. Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a + $ \varepsilon^{2}_{}$b + $ \varepsilon^{4}_{}$c = 0 или a + $ \varepsilon^{4}_{}$b + $ \varepsilon^{2}_{}$c = 0.
б) Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a2 + b2 + c2 = ab + bc + ac.
Прислать комментарий     Решение


Задача 58394  (#29.026)

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 4
Классы: 9,10

Пусть точки A*, B*, C*, D* являются образами точек A, B, C, D при инверсии. Докажите, что:
а) $ {\frac{AC}{AD}}$ : $ {\frac{BC}{BD}}$ = $ {\frac{A^*C^*}{A^*D^*}}$ : $ {\frac{B^*C^*}{B^*D^*}}$;
б) $ \angle$(DA, AC) - $ \angle$(DB, BC) = $ \angle$(D*B*, B*C*) - $ \angle$(D*A*, A*C*).
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .