Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.

Вниз   Решение


На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3. Докажите, что если описанные окружности треугольников A1A2B3, A1B2A3 и B1A2A3 проходят через одну точку, то и описанные окружности треугольников B1B2A3, B1A2B3 и A1B2B3 пересекаются в одной точке.

ВверхВниз   Решение


AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что  CK = CL.  Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что  AP = PL.

ВверхВниз   Решение


Взяли три числа x, y, z. Вычислили абсолютные величины попарных разностей x1 = |x - y|, y1 = |y - z|, z1 = |z - x|. Тем же способом по числам x1, y1, z1 построили числа x2, y2, z2 и т.д. Оказалось, что при некотором n xn = x, yn = y, zn = z. Зная, что x = 1, найти y и z.

ВверхВниз   Решение


Докажите, что для любого n существует окружность, на которой лежит ровно n целочисленных точек.

ВверхВниз   Решение


Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 58409

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.


Прислать комментарий     Решение

Задача 58410

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.
Прислать комментарий     Решение


Задача 58411

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что если (ABCX) = (ABCY), то X = Y (все точки попарно различны, кроме, быть может, точек X и Y, и лежат на одной прямой).
Прислать комментарий     Решение


Задача 58412

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.
Прислать комментарий     Решение


Задача 58413

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .