ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.

Вниз   Решение


а) Докажите, что проективное преобразование P плоскости, переводящее бесконечно удаленную прямую в бесконечно удаленную прямую, является аффинным.
б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости $ \alpha$, то P(A)P(B) : P(C)P(D) = AB : CD.
в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2.
г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 58419  (#30.011)

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

Докажите, что если плоскости $ \alpha_{1}^{}$ и $ \alpha_{2}^{}$ пересекаются, то центральное проектирование $ \alpha_{1}^{}$ на $ \alpha_{2}^{}$ с центром O задает взаимно однозначное отображение плоскости $ \alpha_{1}^{}$ с выкинутой прямой l1 на плоскость $ \alpha_{2}^{}$ с выкинутой прямой l2, где l1 и l2 — прямые пересечения плоскостей $ \alpha_{1}^{}$ и $ \alpha_{2}^{}$ соответственно с плоскостями, проходящими через O и параллельными $ \alpha_{2}^{}$ и $ \alpha_{1}^{}$. При этом на l1 отображение не определено.
Прислать комментарий     Решение


Задача 58420  (#30.012)

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

Докажите, что при центральном проектировании прямая, не являющаяся исключительной, проецируется в прямую.
Прислать комментарий     Решение


Задача 58421  (#30.013)

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

Докажите, что если наряду с обычными точками и прямыми рассматривать бесконечно удаленные, то
а) через любые две точки проходит единственная прямая;
б) любые две прямые, лежащие в одной плоскости, пересекаются в единственной точке;
в) центральное проектирование одной плоскости на другую является взаимно однозначным отображением.
Прислать комментарий     Решение


Задача 58422  (#30.014)

Тема:   [ Проективные преобразования плоскости ]
Сложность: 6
Классы: 10,11

а) Докажите, что проективное преобразование P плоскости, переводящее бесконечно удаленную прямую в бесконечно удаленную прямую, является аффинным.
б) Докажите, что если точки A, B, C, D лежат па прямой, параллельной исключительной прямой проективного преобразования P плоскости $ \alpha$, то P(A)P(B) : P(C)P(D) = AB : CD.
в) Докажите, что если проективное преобразование P переводит параллельные прямые l1 и l2 в параллельные прямые, то либо P аффинно, либо его исключительная прямая параллельна прямым l1 и l2.
г) Пусть P — взаимно однозначное преобразование множества всех конечных и бесконечных точек плоскости, которое каждую прямую переводит в прямую. Докажите, что P проективно.
Прислать комментарий     Решение


Задача 58423  (#30.015)

Тема:   [ Проективные преобразования плоскости ]
Сложность: 7
Классы: 10,11

Даны точки A, B, C, D, никакие три из которых не лежат на одной прямой, и точки A1, B1, C1, D1, удовлетворяющие тому же условию.
а) Докажите, что существует проективное преобразование, переводящее точки A, B, C, D соответственно в точки A1, B1, C1, D1.
б) Докажите, что преобразование задачи а) единственно, т. е. проективное преобразование плоскости определяется образами четырех точек в общем положении (ср. с задачей 30.4).
в) Докажите утверждение задачи а), если точки A, B, C лежат на одной прямой l, а точки A1, B1, C1 — на одной прямой l1.
г) Единственно ли преобразование задачи в)?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .