Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает n точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (n+1)2 попыток?

Вниз   Решение


Пусть K, L, M и N — середины сторон AB, BC, CD и DA выпуклого четырехугольника ABCD.
а) Докажите, что KM$ \le$(BC + AD)/2, причем равенство достигается, только если BC| AD.
б) При фиксированных длинах сторон четырехугольника ABCD найдите максимальные значения длин отрезков KM и LN.

ВверхВниз   Решение


Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?

ВверхВниз   Решение


Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.

ВверхВниз   Решение


Выпуклый n-угольник разрезан на треугольники непересекающимися диагоналями. Рассмотрим преобразование такого разбиения, при котором треугольники ABC и ACD заменяются на треугольники ABD и BCD. Пусть P(n) — наименьшее число преобразований, за которое любое разбиение можно перевести в любое другое. Докажите, что: а) P(n)$ \ge$n - 3; б) P(n)$ \le$2n - 7; в) P(n)$ \le$2n - 10 при n$ \ge$13.

ВверхВниз   Решение


В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?

ВверхВниз   Решение


В каждый угол треугольника ABC вписана окружность, касающаяся описанной окружности. Пусть A1, B1 и C1 — точки касания этих окружностей с описанной окружностью. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что эллиптическое зеркало обладает тем свойством, что пучок лучей света, исходящий из одного фокуса, сходится в другом.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 84]      



Задача 58473  (#31.006)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что множество точек, сумма расстояний от которых до двух заданных точек F1 и F2 — постоянная величина, есть эллипс.
Прислать комментарий     Решение


Задача 58474  (#31.007)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что середины параллельных хорд эллипса лежат на одной прямой.
Прислать комментарий     Решение


Задача 58475  (#31.008)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что уравнение касательной к эллипсу $ {\frac{x^2}{a^2}}$ + $ {\frac{y^2}{b^2}}$ = 1, проведенной в точке X = (x0, y0), имеет вид

$\displaystyle {\frac{x_0x}{a^2}}$ + $\displaystyle {\frac{y_0y}{b^2}}$ = 1.


Прислать комментарий     Решение

Задача 58476  (#31.009)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что эллиптическое зеркало обладает тем свойством, что пучок лучей света, исходящий из одного фокуса, сходится в другом.
Прислать комментарий     Решение


Задача 58477  (#31.010)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

а) Докажите, что для любого параллелограмма существует эллипс, касающийся сторон параллелограмма в их серединах.
б) Докажите, что для любого треугольника существует эллипс, касающийся сторон треугольника в их серединах.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .